Towards a High-quality Visualization of Higher-order Reynold's Glyphs for Diffusion Tensor Imaging

نویسندگان

  • Mario Hlawitschka
  • Younis Hijazi
  • Aaron Knoll
  • Bernd Hamann
چکیده

Recent developments in magnetic resonance imaging (MRI) have shown that displaying second-order tensor information reconstructed from diffusion-weighted MRI does not display the full structure information acquired by the scanner. Therefore, higher-order methods have been developed. Besides the visualization of derived structures such as fiber tracts or tractography (directly related to stream lines in fluid flow data sets), an extension of Reynold’s glyph for second-order tensor fields is widely used to display local information. At the same time, fourth-order data becomes increasingly important in engineering as novel models focus on the change in materials under repeated application of stresses. Due to the complex structure of the glyph, a proper discrete geometrical approximation, e.g., a tessellation using triangles or quadrilaterals, requires the generation of many such primitives and, therefore, is not suitable for interactive exploration. It has previously been shown that those glyphs defined in spherical harmonic coordinates can be rendered using hardware acceleration. We show how tensor data can be rendered efficiently using a similar algorithm and demonstrate and discuss the use of alternative high-accuracy rendering algorithms. Mario Hlawitschka and Bernd Hamann Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University of California, Davis, CA, e-mail: {hlawitschka | bhamann}@ucdavis.edu Younis Hijazi Frauenhofer ITWM and University of Kaiserslautern, Germany e-mail: [email protected] Aaron Knoll University of Kaiserslautern, Germany e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Maximum Enhancing Higher-Order Tensor Glyph

Glyphs are a fundamental tool in tensor visualization, since they provide an intuitive geometric representation of the full tensor information. The Higher-Order Maximum Enhancing (HOME) glyph, a generalization of the second-order tensor ellipsoid, was recently shown to emphasize the orientational information in the tensor through a pointed shape around maxima. This paper states and formally pro...

متن کامل

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

Visualization of tensor fields using superquadric glyphs.

The spatially varying tensor fields that arise in magnetic resonance imaging are difficult to visualize due to the multivariate nature of the data. To improve the understanding of myocardial structure and function a family of objects called glyphs, derived from superquadric parametric functions, are used to create informative and intuitive visualizations of the tensor fields. The superquadric g...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Visualization and Analysis of Diffusion Tensor Fields

The power of medical imaging modalities to measure and characterize biological tissue is amplified by visualization and analysis methods that help researchers to see and understand the structures within their data. Diffusion tensor magnetic resonance imaging can measure microstructural properties of biological tissue, such as the coherent linear organization of white matter of the central nervo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012